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Cigarette smoking is a major public health problem and 
has been identified as the second-most prevalent cause of 
death in the world.  China, a country with a population of 
1.3 billion, is the world's largest producer and consumer 
of tobacco.  It estimates that there are 0.35 billion cigarette 
smokers in China, which bears a large proportion of the 
deaths attributable to smoking worldwide[1].  Cigarette 
smoking results in more than 1 000 000 premature deaths 
each year in China — about 1 in every 5 premature deaths[2].  
Economically, more than $166 billion per year of total Chi-
nese healthcare costs are attributable directly to smoking-
associated diseases.  If the costs of lost productivity due to 
smoking are added (estimated at $86 billion per year), the 
economic burden of smoking is more than $252 billion per 
year, in China alone.  Recent estimates indicate that approxi-
mately one-quarter of the world’s population smokes, that 
smoking is currently responsible for 1 in every 10 premature 
deaths worldwide (about 5 million deaths each year)[3], and 
that this number will double by 2025 unless effective action 
is taken.  Thus, there is an urgent need to reduce smoking 
prevalence worldwide.  Unfortunately, nicotine dependence 
severely confounds attempts to end tobacco product use.

Nicotine is the major biologically active substance that 
promotes the use of tobacco products.  Nicotine exerts its 
biological effects through nicotinic acetylcholine receptors 
(nAChRs).  nAChRs are prototypical members of the ligand-
gated ion channel superfamily of neurotransmitter receptors[4].  
nAChRs represent both classic and contemporary models for 
the establishment of concepts pertaining to mechanisms of 

drug action, synaptic transmission, and structural/functional 
diversity of transmembrane signaling molecules[4].  Neuronal 
nAChRs are found throughout the central nervous system 
and exist as multiple, diverse subtypes of pentameric struc-
tures with unique combinations from at least twelve (α2–α10, 
β2–β4) genetically-distinct subunits[5].  Binding by endog-
enous (acetylcholine) or exogenous (nicotine) agonists 
to nAChR opens an intrinsic ion channel in the receptor, 
allowing the flow of cation ions (Na+, Ca2+, and K+) through 
the cell membrane, and inducing a wide variety of biologi-
cal responses.  Accumulating lines of evidence demonstrate 
that nAChRs play critical roles in mediating nicotine reward, 
dependence and addiction[6, 7].  In addition, alterations of 
nAChRs have been found in various diseases such as Parkin-
son’s diseases, Alzheimer’s disease, schizophrenia, depression, 
epilepsy, diabetes, respiration disorders and some immuno-
logical disorders[8].  Therefore, understanding the molecular 
biology, physiology, pharmacology and pathophysiology of 
neuronal nAChRs will significantly improve the diagnosis, 
prevention and treatment of these diseases and pathological 
conditions, including nicotine addiction.  

Until recently, much of our understanding of the physiol-
ogy and pharmacology of neuronal nAChRs has come from 
heterologous expression studies.  Principally using Xenopus 
oocytes as hosts, but also using transfected mammalian cells, 
these efforts have helped to define the realm of possibilities 
for nAChR subunit combinations that can form functional 
channels[9].  A variety of experimental approaches have 
been employed in the study of natively-expressed nAChRs, 
including molecular and cellular biology, electrophysiology, 
neurotransmitter release analyses, isotopic ion flux studies, 
immunochemistry, neuroanatomy, calcium imaging and 
behavioral testing.  Studies using transgenic mice have helped 
to identify subunits that constitute some native, functional 
nAChR subtypes.  Recently, significant insights have been 
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gained regarding the molecular, cellular and system basis of 
nAChR function in the brain.  For instance, at the atomic 
and molecular level, X-ray crystallographic structures of 
acetylcholine binding proteins (AChBPs) are providing new 
answers to questions about how nAChRs function as bio-
physical machines, and as participants in cellular and systems 
physiology[10].  The studies of structure-function relation-
ships have revealed that the structures of different nAChRs 
with different pharmacological profiles and kinetics will help 
to illustrate how agonists and antagonists bind to orthosteric 
binding sites, how allosteric modulators alter receptor func-
tion by binding outside these sites, how nAChRs gate ion 
flow, and how nAChR cytoplasmic domains affect receptor 
function[4, 11, 12].  At the level of cellular and system biology, 
the functional subtypes of native nAChRs have been identi-
fied in different brain areas and their roles in the mediation of 
nicotine reward, dependence and addiction are beginning to 
be elucidated[5, 13, 14] Particularly, nicotine-induced neuronal 
adaptations (nAChR up-regulation and synaptic plasticity) 
in the brain reward center (ventral tegmental area) have been 
postulated as an important cellular mechanism of nicotine 
reinforcement[15-17].  At the behavioral level, nicotine self-
administration experiments combined with nAChR subunit 
knockout mice have provided important evidence concern-
ing which nAChR subtypes are crucial for nicotine seeking 
behavior[7, 18, 19].  Finally, based on the above experimental 
data, some theoretical models of nAChR-associated signal 
pathways and neuronal circuits have been proposed to inter-
pret the roles of nAChRs in addiction, neurodegeneration, 
and mental illnes[20-22].

Collectively, multiple findings indicate that nAChRs in 
the brain play roles not only in the mediation of classical, 
excitatory, cholinergic neurotransmission at selected loci, but 
also, and perhaps more globally, in the modulation of neu-
rotransmission by other chemical messengers, including glu-
tamate, GABA, the monoamines, including dopamine, nor-
epinephrine and serotonin, and acetylcholine (ACh) itself.  
This means that some nAChR subtypes have postsynaptic (or 
peri-synaptic), somatodendritic localizations, whereas oth-
ers have pre-synaptic dispositions.  Moreover, some nAChRs 
have been implicated in processes such as structuring and 
maintenance of neurites and synapses.  Thus, nAChRs may 
play complex and important roles in neuronal function and 
in neurological and psychological diseases.  

In this nAChR-themed issue, I bring together many of 
world’s leading researchers in the nAChR research field to 
provide state-of-the-art reviews, and original research arti-
cles, covering a wide range of nAChR-related areas.  These 
articles span from molecular to behavioral investigations 

involving different experimental techniques such as molecu-
lar/cell biology, biophysics, electrophysiology, receptor phar-
macology and behavioral testing.  The articles in this specific 
issue provide a broad perspective on current advances in 
nAChR studies.  I hope this issue will provide a foundation 
for future developments in nAChR research.  In particular, 
I sincerely hope that this specific issue will promote the 
further engagement of Chinese scientists in nAChR-related 
research, smoking cessation efforts, and the management of 
smoking-associated diseases in China.
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